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Abstract

Traditionally, human languages are perceived as a single cohesive set of words
— a vocabulary — and grammatical rules. In reality, every individual who
speaks a given language has their own personal understanding of it — their
idiolect. In this work, we use Multi-Agent Reinforcement Learning to train
four populations of agents, each possessing different combinations of idiolectic
traits. We then compare their performance on a variety of tasks, including
in-distribution performance, zero-shot generalization to new environments,
zero-shot generalization to new agents, and robustness to external noise. Our
findings indicate that the incomplete communication generated by idiolects may
aid languages in not over-fitting to situations encountered during evolution;
they further suggest that the existence of unique language representations for
each individual within a population, their idiolects, likely aids in providing
robustness to external communication failures.
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1 Introduction

Language is an extraordinarily complex and
uniquely human trait. Due to the inherent entan-
glement of language and cognition, many fields
including psychology and cognitive science see
it as a window to study various human processes.
However, there exist certain aspects of human cog-
nition which can only be readily observed when
studies consider broader timescales, such as cogni-
tive development (Chater and Christiansen, 2010).
In these cases, one benefits not only from studying
language at any given point in time, but its evolu-
tion, and how this evolution has been shaped by
human cognition. It is this perspective with which
we present our work, gaining deeper understand-
ings of human cognition by studying what exactly
drives a specific aspect of language evolution.

1.1 Idiolects and ‘Good-Enough’
Communication

When considering language, one usually thinks in
terms of a single cohesive set of words — a vocab-
ulary — and a single cohesive set of grammatical
rules. These rules enable the construction of more
cohesive, compositional elements that possess a
depth of meaning larger than the words themselves.
However, in thinking of language this way, we lose
sight of a critical part of language: that every indi-
vidual’s understanding of it is uniquely different.

No two individuals who speak the same language
have the exact same understanding of it. From each
person’s unique vocabulary to their grammar and
even their own pronunciation, all who employ a
given language have a distinct way of using it —
their personal idiolect. This term commonly de-
notes the unique speech variety, or linguistic sys-
tem, used by a particular individual. Idiolects are
shaped by the personal experiences and cultural
influences within the life of a language user. It
follows that instead of viewing language merely as
a set vocabulary and the grammatical rules that al-
low compositionality from that vocabulary, perhaps
there should be a paradigm shift to view language
from a more idiolectic perspective: as an amalga-
mation of the idiolects of all its users.

It may seem counter-intuitive that every speaker
in a given population possesses their own indi-
vidual understanding of a language, as this may
potentially lead to difficulties in communication.
This logic follows a common assumption: that both
the production and comprehension of language be-

tween communicating agents is complete. By com-
plete, we mean that a) the message that the speaker
intends to convey is completely captured in their
utterance and b) this is then completely deciphered
and understood by the receiver. However, this as-
sumption is faulty. Within human languages, inter-
agent communication operates on a framework of
incomplete production and comprehension. De-
spite this lack of completion, language is largely
able to convey a ’good-enough’ approximation of
the intended meaning between individuals. In these
cases, where the conveyed meaning is not total,
but not completely lost, the incomplete produc-
tion and comprehension are referred to as *good-
enough’ production (Goldberg and Ferreira, 2022)
and ’good-enough’ comprehension (Ferreira and
Patson, 2007).

"Good-enough" communication is driven in part
by the ‘Now-or-Never Bottleneck’ (Christiansen
and Chater, 2016). This phenomena consists of
fundamental limitations in the sensory and cogni-
tive memory function of the brain, and forces the
immediate processing of linguistic input. If a lan-
guage user does not immediately process linguistic
input, it will not be recalled, and thus the infor-
mation contained therin is lost forever. Immediate
comprehension is driven by a process termed as
“chunk and pass”, in which the brain uses predic-
tive mechanisms to ensure that any ambiguities in a
received message are resolved during the first pass.
Once a first pass is completed, the original input is
lost and cannot be recovered. As such, this bottle-
neck “implies that the processing system will build
the most abstract and complete representation that
is justified, given the linguistic input”, but it does
not guarantee perfectly complete communication
(Christiansen and Chater, 2016). The bottleneck
does, however, select for the linguistic structures
which are easiest to process, whilst fitting within
its constraints.

The combination of a lack of complete com-
munication with the selection for linguistic struc-
tures which are easiest to process results in ‘good
enough’ communication, i.e. communication
which is not necessarily complete, but through the
process of “chunk and pass”, good enough to be
understood.

There further exist many roadblocks to complete
communication between agents on both the speaker
and receiver’s end. For example, a speaker may not
have the necessary vocabulary to optimally express



their message, or a receiver may misinterpret the
phrases they receive — whether through an inability
to parse, a predisposition to different interpreta-
tions, or another cause. There are an endless num-
ber of ways in which communication with human
language as a medium may not be complete. It
is this lack of complete encoding and decoding of
messages that is encapsulated by these aforemen-
tioned concepts of good-enough production and
comprehension.

More roadblocks in perfect communication stem
from language being more than a system consisting
of words, phrases and sentences. These are just the
tip of the ‘communication iceberg’, with aspects
such as factual knowledge, unspoken rules, conven-
tions, empathy, and more, all existing below the
surface, but underpinning language (Christiansen
and Chater, 2022). Language is not a system with
which the meaning of a thought can be neatly pack-
aged and delivered from the sender to the receiver;
instead, language is a charade-like method in which
there are a vast many cues which can help signal
meaning between communicating agents.

So clearly, in language, universal understanding
is by no means necessary, or even plausible, for
successful communication to occur. Merely all that
is needed is good-enough production and compre-
hension.

1.2 Language Evolution through the Eyes of
Biological Evolution

There is a wealth of literature attempting to under-
stand language evolution through a comparison to
its biological equivalent. In this manner, cogni-
tive scientists have viewed language itself as akin
to a biological organism — a self-organizing adap-
tive system — which evolves to adapt to the brain,
whilst subjected to the pressures of human learn-
ing and processing mechanisms (Christiansen and
Chater, 2008). This way of thinking leads directly
to applying evolutionary theories, such as natural
selection, to explain the emergence and subsequent
persistence of many core linguistic traits. It follows
that many linguistic traits confer some sort of evo-
lutionary advantage upon a language that allows
for its survival, and subsequent reproduction (in a
language’s case, new users).

With this perspective in mind, the ubiquity of id-
iolectic languages suggests an evolutionary benefit
in a language being non-universal, possessing vari-
ance in the understanding between its many users.

However, there has been little to no work done to
understand what evolutionary advantage idiolec-
tic languages possess. This study attempts to fill
that gap and duly provide insights into what advan-
tages idiolectic languages hold over their universal
counterparts.

One such theory we present is best viewed via
the aforementioned link between biological and
linguistic evolution. In biological natural selection,
traits that give an evolutionary advantage to those
who possess them get artificially selected for re-
production, and show up with higher prevalence
in the next generation of individuals. However,
there must be a fuel for these new traits to arise.
In biological evolution, this fuel is random genetic
mutation, leading to unforeseen variations and the
emergence of new traits. It follows that perhaps
idiolectic diversity is exactly the fuel that provides
new linguistic traits which can be selected for dur-
ing language evolution. If this were the case, we
would expect that while a universal language may
perform better at tasks in environments similar to
the ones trained upon, a language with broad idi-
olectic diversity will likely perform better on, or at
least be better equipped to adapt to, tasks involving
novel environments. Similarly, we would expect
language systems with this diversity between its
speakers to be able to learn new concepts much
more efficiently, due to the exploration inherent
to the use of these given language systems. In
contrast, a universal language, with no inherent ex-
ploration, would likely find it much more difficult
to learn new concepts.

Note that, in this study, we explicitly stray away
from studying exactly how idiolectic languages de-
veloped, leaving this for future work, because while
a fascinating question, it is much more difficult to
model. Further, while we have discussed theoret-
ical benefits idiolects may lend to a language’s
evolution, we do not measure idiolect’s affects on
a language’s speed of adaptation to new settings.
This decision was dictated by our chosen meth-
ods, and their associated computational limitations
— which we discuss at length in Section 4.4. Of
course, none of what is discussed here precludes
the prospect that this preliminary study may pro-
vide results or methods that inform such future
studies.



1.3 Reinforcement Learning and Language

There exist a host of papers in the field of rein-
forcement learning (RL) which apply the field’s
frameworks towards the development of models
with capacities to understand and use language in a
humanoid manner. At its core, reinforcement learn-
ing utilizes an agent housed in an environment.
This agent is then provided tasks and goals, duly
being rewarded for completing a given task, and
penalized for failing to complete said task. While
agents’ behaviors begin as completely random in
nature, slowly their good behavior (in relation to
the tasks at hand) are biased for (i.e. rewarded), and
their bad behavior biased against (i.e. punished).
Models trained using RL to aid language devel-
opment are typically trained in population-based
settings, with multiple agents. This sub-field of RL
is colloquially referred to as multi-agent reinforce-
ment learning (MARL), in which multiple agents,
or models, interact to accomplish their goals.

Studies to date have simulated the emergence of
languages between agents which have been trained
on cooperative tasks, such as image identification
(Lazaridou et al., 2016), prisoner’s dilemma style
problems (Foerster, 2018), basic directing of move-
ment for other agents (Mordatch and Abbeel, 2018),
and others. While it must be noted that many of the
resulting emergent languages are either extremely
rudimentary, completely symbolic in nature, or
both, there have been a surprising number of stud-
ies in which the language that emerges is composi-
tional in nature (Mordatch and Abbeel, 2018), or
where agents manage to develop seemingly natural
language (Lazaridou et al., 2016).

In this study, we train a host of populations
which simulate populations of agents with, and
without, various traits we construct to simulate id-
iolects. We then proceed to evaluate the perfor-
mance of these populations on four different tasks.
We find no performance difference when evalu-
ating populations in environments which necessi-
tate zero-shot generalization to new colors, and
paradigms which necessitate communication with
new agents from a separately trained population.
Notably, we do find performance differences be-
tween populations with and without idiolects when
performing in environments drawn from the train-
ing distribution, and on tasks which inject variable
amounts of external noise. We view these results
as evidence that idiolects may help with the devel-
opment of robust languages in human populations,

which are well-fit to the environments and tasks at
hand.

2 Emergent Communication
Development

Inspired by work from Mordatch and Abbeel 2018,
and subsequently Lowe et al. (2017), our evolu-
tionary environments are formulated as a partially
observable Markov game (Littman, 1994). By def-
inition of a Markov game, this consists of a set,
S, of all configurations of agents and landmarks
in our game, a set of actions, A; ... Ay, for each
agent, and a set of observations, O; ... Oy, for
each agent. Furthermore, state transitions are de-
fined by a function 7: S x A} x --- x Ay — S.
Each agent, i, in a given population makes an ac-
tion, physical and communicative, as dictated by
a learned function, pp, : S — A. Further, at
every time-step, each agent makes observations
with function o; : S — O, and receives reward
r;: S x .AZ — R.

2.1 Environmental Setup

Our environment, as seen in Figure 1, consists of
two agents and three landmarks. Each agent and
landmark, i, is randomly initialized with position,
P = [pi,xapi,y]’ where PizPiy S [_17 1] During
training, one landmark is assigned to be red, an-
other green, and the other one blue. Our agents also
possess a goal vector, g;, consisting of the landmark
to which they would like the other agent to move.
These goals are private and not observed by the
other agent. Associated with each agent is a private
"reference frame", consisting of a randomly initial-
ized rotation matrix, by which all of their positional
observations are rotated. This rotation ensures that
developed communications focus on the traits of
the environment, and not merely relative positions
of agents and landmarks in the environments.

At every time point, ¢, an agent takes a step in
a certain direction, with their action represented
by u;,, and their new position being calculated
by pi,,, = pi, + ui,. Further, at each time ¢,
both agents will utter a communication vector, c;,,
which is a 10-dimensional vector, observable by
the other agent. Over time, our agents develop the
ability to convey to their partner agent how to com-
plete their goal, by utilizing this communication
vector.

The
at any

state of a given environment
time, f, can be represented by



Figure 1: Example environment. Each agent and land-
mark has their = and y coordinates randomly initial-
ized within [-1, 1]. Of the three landmarks, one is red,
one blue, and one green. In the rendered environment,
pictured above, the three landmarks have solid colors,
whereas the two agents are colored lightly, with their
colors corresponding to the landmark they should move
to — this is equivalent to the landmark corresponding to
the other agent’s goal. In the pictured environment, the
red agent’s goal is for the green agent to move to the
green landmark, and vice-versa.

St = [py,.-.ps, c1, ¢ g1 g2, and a
given agent’s observation by the vector
0, = [iplt ---iP5; C1, C24 gi], where iPj: is
the j'* entity’s position seen through agent i’s
reference frame at time t.

Throughout training and evaluation, we roll-out
environments for 100 frames before terminating.
Rewards are cooperative, calculated by summing
the £, distances between each agent’s goal land-
mark and the position of their partner agent (i.e. the
agent they want to move to their goal landmark).
This sum is then negated, ensuring that when we
minimize our loss (i.e. the negative of the reward)
we directly minimize the distance our agents are
from where the other agent would like them to
move.

In an effort to aid development of our environ-
ments, Bettini et al. (2022)’s Vectorized Multi-
Agent Simulators, also known as VMAS, are used
as a starting point from which we develop our
environments. The environments already present
within VMAS include the multi-particle environ-
ments from Lowe et al. (2017), with the additional
bonus that they are developed in a vectorized form'.

'In the context of this study, vectorized environments and

Vectorization allows for parallel execution of mul-
tiple environments at once, speeding up training
time by many orders of magnitudes.

2.2 Algorithm Setup

Agents learn policies via Lowe et al. (2017)’s off-
policy Multi-Agent Deep Deterministic Policy Gra-
dients (MADDPG), with a decentralized critic. The
decision to use decentralized critics was intended
to allow each individual in a population to develop
their own "world view", in an attempt to instill
real-life credibility to our simulations. In order to
train our populations of two agents, Bettini et al.
(2023)’s BenchMARL package was used, chosen
due to its built in implementation of MARL algo-
rithms, such as MADDPG, native integration with
VMAS, and modularity.

As suggested by the VMAS fine-tuned hyper-
parameters in Bettini et al. (2023) for off-policy
algorithms, our populations are trained with 60
environments per batch. Populations are trained
on a total of 54,000 environments, with intermedi-
ate checkpoints repeatedly saved after exposure
to 3,000 environments. Throughout the rest of
this paper, we label checkpoints by the amount
of frames they have seen”. Full hyper-parameters,
which we source from Bettini et al. (2023)’s fine-
tuned VMAS hyper-parameters, are specified in
Appendix A.

2.3 Idiolect Development

In order to simulate idiolects, we develop two train-
ing regimens: one inherent to the environment, and
one inherent to the agent’s policies.

2.3.1 Environmental Idiolects

One such method to develop idiolects simulates
their effects, i.e. good-enough production (Gold-
berg and Ferreira, 2022), and good-enough com-
prehension (Ferreira and Patson, 2007). To achieve
this, we distort agents’ communications to each
other. For each agent in a population the following
procedure is performed. Two values are selected
at random from a Gaussian distribution and used
to parameterize a Beta-distribution. During every
time-step in a given episode, each agent will add
a 10-dimensional vector, sampled at random from
their unique Beta-distribution and scaled down by

batched learning are synonymous.

For example the first checkpoint, which has been trained
on 3,000 environments — and subsequently 300,000 frames —
is labelled Checkpoint 300,000



2, to their observed and outgoing communications.
In doing this, each agent has small, unique, losses
of completion in their "production" — sending of a
communication — and "comprehension" — receiving
of a communication.

2.3.2 Policy-Based Idiolects

The other method utilized to simulate idiolects in an
environment is by directly modifying the character-
istics of a population’s learned policy. Recollecting
that idiolects are merely an individual’s own unique
understanding of a language, in order to simulate
idiolects, policies must be modified to be unique
to each agent in a population. To accomplish this,
populations trained to develop this representation
of idiolects are trained with decentralized actor net-
works. As such, agents do not share the parameters
of their actor network, letting them each develop a
unique understanding of their emergent langauges.

2.3.3 Trained Populations

Given the two different methods to simulate idi-
olects, we train four different types of populations:

1. A population with shared actor-network pa-
rameters and no noise in the communication
channel.

2. A population with shared actor-network pa-
rameters and noise in the communication
channel.

3. A population with unshared actor-network pa-
rameters and no noise in the communication
channel.

4. A population with unshared actor-network
parameters and noise in the communication
channel.

By training with these four paradigms, we allow
for like-to-like comparisons between different rep-
resentations of idiolects in multi-agent populations.
We further train three populations?, with distinct
seeds, for each group, enabling us to evaluate the
statistical soundness of any observed phenomena
or results.

3 Experiments

All populations are evaluated on four different met-
rics: performance on in-distribution environments

3This number was chosen due to computational limitations
in our study.

(Section 3.1), performance during zero-shot gener-
alization (Section 3.2), zero-shot agent integration
(Section 3.3), and performance in variable noise
conditions (Section 3.4). These metrics were cho-
sen to test the population’s abilities to perform
when faced with real-world challenges.

Throughout this section, we refer to agent per-
formance using their total rewards* throughout an
episode. To frame this discussion, we find it nec-
essary to mention that in our environments, agents
whose total rewards are in the range of -70 or higher
typically have developed the ability to complete our
given task. In contrast, the optimal non-verbal strat-
egy — which corresponds to agents jointly moving
to the geometric average of the triangle formed by
the landmarks — scores nearer to -120.

3.1 Performance on In-Distribution
Environments

Setup

Populations are first measured on their abilities to
complete tasks in environments selected from the
same distribution on which they were trained. For
each population, total reward-per-episode is eval-
uated at every checkpoint on 5,000 environments
(1,000 each for 5 different seeds). Performances are
subsequently averaged per group (i.e. each differ-
ent training paradigm) and then compared between
groups.

Results

Figure 2 shows all four population groups evaluated
on environments in the training distribution across
all saved checkpoints. At first glance, it seems that
across all checkpoints evaluated there are no con-
sistent, significant, differences between any popula-
tions’. However, when we fit a linear mixed effects
model to our data after convergence (i.e. perfor-
mance at checkpoints 3,600,000 to 5,400,000), as
seen in Table 1, we find that the coefficient for
the noisy training indicator variable is both pos-
itive and significant, with no other variables sig-
nificant. This indicates that when our populations
are trained with a noisy channel, they possess clear
performance benefits when compared to popula-
tions trained with a clean communication channel,
and further, that this is the only factor in this setup
which provides significant benefit.

*In a given episode, total reward is the sum of each agents’
rewards at each time-step.
SNumerical values can be seen in Appendix B
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Figure 2: In-Distribution Environment Total Reward. Plotted for all populations when evaluated at every saved
checkpoint. For each population, the performance is evaluated at every checkpoint on 5,000 environments — 1,000
each for 5 different seeds, with mean reward in a given environment averaged across all evaluated environments.

Variable Coefficient | Standard Error | Z-Score | P> |ZI

Noisy Channel 5.363 1.190 4.509 | <.00001
Shared Network 1.838 2.291 0.802 0.422
(11Checkpoint) 0.000 0.000 4.945 0.000
(11Population) 0.551 0.364 1.513 0.130

Table 1: Linear Mixed Effects Model for In-Distribution Environments. Coefficients and statistics fit for
population performance on in-distribution environments. The model is fitted with the formula: Reward = 1 + (Noisy
Channel) + (Shared Network) + (1ICheckpoint) + (1/Population). In this case, noisy channels and shared parameters
are both indicator variables and treated as fixed effects. We control for the checkpoint and population by enforcing
them as random effects.
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3.2 Zero-Shot Generalization to New Colors

Setup

Populations are next measured on their perfor-
mance in environments sampled from outside the
training distribution. To create novel environments,
we randomize the color of every landmark, instead
of having one red, one green and one blue. This
task then uses the same metrics as presented in
Section 3.1.

Results

Figure 3 shows all four population groups evalu-
ated on environments in the training distribution
across all saved checkpoints. We observe that, sim-
ilarly to the in-distribution environment task, there
are no consistent, significant, performance differ-
ences between groups. However, unlike the in-
distribution environments, our populations struggle
to even complete the task when we use completely
random colors. This inability can be seen in their
total reward plateauing in-between -120 and -160,
indicating a regression to the optimal non-verbal
strategy®. When we fit the same linear mixed ef-
fects model (Table 2) as in Section 3.1, we now
see there are no significant variables. These results
indicate that none of our populations possess traits
allowing them to better generalize to new environ-
ments.

3.3 Zero-Shot Agent Integration

Setup

Inspired by the phenomena of language contact, we
design a task to evaluate the performance of our
agents when interacting with agents trained in a
different population. In this setting, two agents are
isolated from different populations and introduced
to each other. Total reward-per-episode is then mea-
sured across 500 environments (100 environments
across 5 different seeds). Similar to our evaluation
in Section 3.1, performance is then averaged per
group and compared between groups.

This task, known in RL-settings as Cross-Play
(Hu et al., 2021), is performed between every
checkpoint after convergence in every population,
with convergence occurring in our populations
around exposure to 3,600,000 environments.

Results

Figure 4 demonstrates that agents struggle to per-
form in cross-play settings. We see, along the di-

®Numerical values can be seen in Appendix C

11

agonals of our heat maps, that when populations
are measured performing cross-play with their own
population, i.e. a normal roll out, they successfully
complete a given task. In comparison, when we
look at the off diagonals, we see that agents’ scores
are consistent with the optimal non-verbal strategy.
To us, this clearly indicates that agents struggle
to communicate when introduced to agents that
were trained separately, and subsequently speak a
different language.

3.4 Variable Noise Conditions

Setup

The final set of tasks is inspired by work from Lo-
gan et al. (1991), McMillan and Saffran (2016), and
Austin et al. (2022) among others, which suggests
that noise and variability help drive more robust
language learning in individuals. To investigate
this idea through our simulations, we evaluate the
performance of our populations, post-convergence,
in three specific environments: environments with
no noise at all, environments where populations
are evaluated in the same noise conditions as they
were trained in, but with additional Gaussian noise
added to the communication channel, and environ-
ments with no idiolectic noise (i.e. noise unique
to an agent and simulating "good enough commu-
nication") but possessing Gaussian noise. This
Gaussian noise is intended to corrupt the commu-
nication channel, acting similarly to external noise
in daily communication — we refer to this Gaussian
noise as "external noise" going forward. All the
above tasks feature environments sampled from our
training distribution.

Each of these tasks are designed to specifically
capture different ways in which idiolects may pro-
vide performance advantages to a population of
speakers. The first task attempts to compare the
raw language which develops in a given popula-
tion, stripping away any communication failures
that occur as a result of idiolects. In comparison,
the second task attempts to probe how robust per-
formance is to external noise when it is present in
the setting in which a language developed. Finally,
the third task focuses specifically on this external
noise, attempting to discern how robust languages
are to purely external noise, removing any noise
present due to idiolects.

Similarly to our cross-play evaluations, we mea-
sure total reward across 500 environments (100
environments each for 5 different seeds). Further,
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Figure 3: Novel Environment Total Reward. Plotted for all populations when evaluated at every saved checkpoint.

For each population, the performance is evaluated at every checkpoint on 5,000 environments — 1,000 each for 5
different seeds, with mean reward in a given environment averaged across all evaluated environments.

Variable Coefficient | Standard Error | Z-Score | P > |ZI
Noisy Channel -4.284 3.224 -1.329 | 0.184
Shared Network -6.013 3.823 -1.573 | 0.116
(1ICheckpoint) -0.000 0.000 -0.980 | 0.327
(1/Population) -0.591 0.382 -1.545 | 0.122

Table 2: Linear Mixed Effects Model for Novel Environments. Coefficients and statistics fit for population
performance on novel environments. The model is fitted with the formula: Reward = 1 + (Noisy Channel) + (Shared
Network) + (1ICheckpoint) + (1IPopulation). In this case, noisy channels and shared parameters are both indicator
variables and treated as fixed effects. We control for the checkpoint and population by enforcing them as random
effects.

Shared Network, Noisy Channel Shared Network, Non-Noisy Channel Unshared Network, Noisy Channel ~ Unshared Network, Non-Noisy Channel
-0

Agent 0

AnEEEEEEEEEN
Agent 1 Agent 1

Figure 4: Cross-Play Matrix. Visualization of agent performance (total reward) when paired with other checkpoints
(within trained population and out of trained population). y-axis represents Agent 1, and the x-axis Agent 0. Agents
0-8: Checkpoints 3600,000 to 5,400,000 of Population 0, spaced by intervals of 300,000. Agents 9-17: Checkpoints
3,600,000 to 5,400,000 of Population 1, spaced by intervals of 300,000. Agents 18-26: Checkpoints 3600,000 to
5,400,000 of Population 2, spaced by intervals of 300,000. Each block in the grid is obtained by evaluating the pair
on 500 randomly generated environments, 100 environments across 5 seeds.
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for each task that involves adding Gaussian noise,
we evaluate with Gaussian noise at 20%, 40%, 60%,
80% and 100% of the full noise level, where "full
noise" is described as selecting from a Gaussian
distribution with 4 = 0 and o = 1.

Results

We fit a linear mixed effects model to determine
the effect of our various training paradigms on fi-
nal performance, where the "shared_params" and
"noisy_training" variables are indicator variables
for whether actor network parameters are shared
and training includes noisy channels respectively.
We report our results in Tables 3, 4 and 5. In all
tasks, we can see that our noisy indicator variable
has a positive, significant, coefficient, indicating
that when we train with noise, it leads to significant
increases in performance. Furthermore, in both of
our tasks which add external Gaussian noise, we
see that our shared parameters indicator variable
has a negative, marginally significant, coefficient.
These results indicate that when we train without
shared parameters, we also find evidence of in-
creases in performance.

4 Discussion

In this work, we built upon a reinforcement-
learning framework for emergent communication
to develop simulations of real-world populations
with varied linguistic traits. Our experiments on
four different tasks demonstrate that idiolects likely
aid the development of languages better fit to their
general environment and task. Furthermore, our re-
sults also indicate idiolects may help drive the evo-
lution of languages more robust to external noise.
In contrast, we see no benefits to idiolects in zero-
shot generalization, or zero-shot cross-play. In this
section, we will walk through our various tasks,
and discuss our results further.

4.1 In-Distribution and Novel Environment
Performance

We demonstrate that populations of agents pos-
sessing idiolects perform better than populations
of agents without idiolects when evaluated in
environments drawn from their training distribu-
tion. Specifically, we find that populations of
agents trained with noisy channels simulating
"good-enough" production and comprehension,
show performance benefits when evaluated on in-
distribution environments. In contrast, we find no
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significant performance benefit derived from train-
ing with or without shared actor networks.

Our injection of idiolectic noise to the commu-
nication channel can be viewed in a similar vein
to adding noise during training in classical deep
learning. This has been reported by Srivastava
et al. (2014), among countless others, to provide
performance advantages by smoothing the data dis-
tribution, which in turn helps prevent overfitting’.
Applying these ideas to our results, in which perfor-
mance is significantly positively affected by noise
during training, would suggest that the presence of
idiolects — and the noisy communication generated
by them — may help in disrupting any overly precise
patterns or structures present in the encountered en-
vironments. This data smoothing likely pushes our
languages to develop more generalized commu-
nicative systems, better fit to the task and overall
distribution of environments seen during training.
In contrast, universal languages might over-fit to
the specific environmental configurations seen dur-
ing their evolution.

We also see that when performing our evalua-
tions in novel environments, with landmarks pos-
sessing colors not seen during training, neither
noisy training nor shared networks lend perfor-
mance advantages to our populations. We perform
these evaluations in a stop-gap attempt to measure
the capacity for adaptation, recognizing that there
are fundamental limitations in our methodology
— discussed in Section 4.4 — that prevent us from
measuring adaptation speed, duly limiting us to
zero-shot tasks. As such, this failure in gener-
alization is not particularly surprising; our origi-
nally presented theory presents idiolects as a source
for rapid linguistic mutation for natural selection,
which should manifest in quicker adaptation to new
environments. However, zero-shot generalization
tasks, such as the one we use for evaluation, are
largely impossible for our populations when not
provided the chance to adapt to these new environ-
ments.

4.2 Zero-Shot Agent Integration

Our results for the zero-shot agent integration task
suggest that agents with idiolects cannot communi-
cate with agents from other populations any better

"It is pertinent to note that in deep learning one classically
removes noise regularization during test time to realize per-
formance advantages, however the evaluations reported here
occur (and duly performance advantages are realized) with
noise present for populations trained with noisy channels.



Variable Coefficient | Standard Error | Z-Score | P > 1ZI

Noisy Channel 5.927 1.175 5.043 | <0.0001
Shared Network 0.950 2.263 0.420 0.675
(11Checkpoint) 0.000 0.000 5.037 0.000
(1IPopulation) 0.431 0.360 1.198 0.231

Table 3: Linear Mixed Effects Model for Non-Noisy Environments. Coefficients and statistics fit for population
performance on non-noisy environments. The model is fitted with the formula: Reward = 1 + (Noisy Channel) +
(Shared Network) + (1ICheckpoint) + (1IPopulation). In this case, noisy channels and shared parameters are both
indicator variables and treated as fixed effects. We control for the checkpoint and population by enforcing them as
random effects.

Variable Coefficient | Standard Error | Z-Score | P> IZI

Noisy Channel 5.126 0.496 10.324 | <0.0001
Shared Network -1.835 0.971 -1.889 0.059
(1ICheckpoint) 0.000 0.000 11.640 0.000
(1IPopulation) -0.171 0.155 -1.102 0.271
(1INoise) -0.027 0.049 -0.544 0.587

Table 4: Linear Mixed Effects Model for Environments with Training Noise Conditions and Added External
Noise. Coefficients and statistics fit for population performance on their training environments with various amounts
of Gaussian noise in the communication channel. The model is fitted with the formula: Reward = 1 + (Noisy
Channel) + (Shared Network) + (1/Checkpoint) + (1IPopulation) + (1INoise). In this case, noisy channels and shared
parameters are both indicator variables and treated as fixed effects. We control for the checkpoint, population, and
external noise level by enforcing them as random effects.

Variable Coefficient | Standard Error | Z-Score | P> IZI

Noisy Channel 5.199 0.495 10.507 | <0.0001
Shared Network -2.029 0.968 -2.096 0.036
(1ICheckpoint) 0.000 0.000 11.692 | 0.000
(1IPopulation) -0.199 0.155 -1.284 0.199
(1INoise) -0.051 0.049 -1.046 0.296

Table 5: Linear Mixed Effects Model for Externally Noisy Environments. Coefficients and statistics fit for
population performance on non-idiolectically noisy environments with various amounts of Gaussian noise in the
communication channel. The model is fitted with the formula: Reward = 1 + (Noisy Channel) + (Shared Network) +
(11Checkpoint) + (1IPopulation) + (1[Noise). In this case, noisy channels and shared parameters are both indicator
variables and treated as fixed effects. We control for the checkpoint, population, and external noise level by enforcing
them as random effects.
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than agents without idiolects can, when evaluated
in a zero-shot setting. This similar performance
is also not surprising to us, as for there to be no-
table difference, one of two things would likely
need to be true: either the presence of idiolects
would provide the ability for generalization of com-
munication to new languages, or idiolects would
need to act as "regularizers", driving populations
to the same communication methods for similar
environments and tasks. However, neither of these
phenomena are observed in the real world.

‘We do observe that, in this absence of commu-
nicative ability, agents adopt the optimal non-verbal
strategy. This is promising to observe, as it is what
we would expect to see in human settings, and
lends more real-world credence to our simulations.

4.3 Variable Noise Settings

One task where we observe significant differences
is when we consider variable noise settings. As
a reminder, in these evaluations, we evaluate our
populations on three tasks: the first task comparing
purely the language developed in different train-
ing regimens, with no noise of any type present,
the second task probing how robust in-distribution
performance is to external noise, and the third task
focusing specifically on how robust each language
is to external noise, possessing only environmental,
but no idiolectical noise.

Our first point of note is that the presence of a
idiolectically noisy channel during training drives
significant performance advantages for a given pop-
ulation in all of our evaluatory tasks. As mentioned
in our discussion in Section 4.1, we believe this is
an indicator of the noise resulting from idiolects
"smoothing" the distribution of environments en-
countered, driving the development of languages
not over-fit to the environments seen during train-
ing. Given that idiolectic noise in our simulations
mirrors good-enough production (Goldberg and
Ferreira, 2022) and comprehension (Ferreira and
Patson, 2007), we conclude that "good-enough
communication”" — in part driven by idiolects —
helps guide language evolution toward languages
better-fit to the tasks and environments encountered
during said evolution than those which evolve with
no idiolectic noise. Of course, these results do not
preclude the possibility that other aspects of "good-
enough communication" are equally, or more, im-
portant in driving effective communication; how-
ever these are not questions we can answer given
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the structure of our work, instead necessitating fu-
ture work.

When we evaluate our populations in settings
with external noise, we also observe the emergence
of shared parameters in our agent’s actor networks
as a detriment to performance. In comparison to
noisy training, which seems to universally drive the
performance of languages better fit to the environ-
ment and tasks at hand, learning non-ubiquitous
representations of language only lends performance
benefits when we test for their robustness to com-
munication corruption. This performance drop as-
sociated with shared parameters in our agent’s actor
networks indicates that a non-universal representa-
tion of language drives the development of robust
communicative signaling. This robustness provides
performance advantages in the most "real-world"
settings we consider, in which noise occurs not only
from individual communicative points-of-failure,
but also from the external environment. While our
earlier results regarding noise are notable, they are
not purely beholden to idiolects, with other sources
of noise likely to give similar results. However,
non-ubiquity in language understanding is a direct
representation of idiolects, and as such we find
these results extremely encouraging, suggesting
this decentralized view of language lends a robust-
ness not seen in universal languages; an extremely
important trait to have.

4.4 Limitations and Future Work

One avenue of immediate work which could further
this project could comprise training more popula-
tions. Our sample size of three populations per
group is atypically small, due to our limited com-
putational resources. If we include more popula-
tions in our statistical analyses, we expect to see a
large reduction in our p-values, allowing us to be
more confident in our results and conclusions. This
is particularly relevant to our results presented in
Section 3.4, but also broadly applicable.

Another line of immediate inquiry would be to
reproduce our results on other MARL tasks neces-
sitating communication. There exist a host of other
MARL tasks, some of which are already integrated
into VMAS, which necessitate the emergence of
communication between agents for completion. Re-
producing our observed results on these tasks and
environments would also allow us to draw stronger
conclusions supporting the findings that we have
thus far demonstrated with a single task.



Perhaps the largest limitation to our study was
our use of batched simulators, necessitated by our
lack of adequate computational resources. In a
batched setting, such as the VMAS environments
(Bettini et al., 2022) we used in this study, algo-
rithms process "batches" of data at a time, with
subsequent weight updates performed utilizing av-
erages across all the rewards seen in the various
environments in the batch. In this manner, our
algorithm is able to process a large amount of envi-
ronments at a time (in our case 60), thus speeding
up training by an order of magnitudes.

However, while computationally efficient,
batched learning is quite dissimilar to human learn-
ing. In settings similar to the ones we present to our
agents, humans will only process, and learn from,
one environment and scenario at a time. It is a large
part due to this sequential cognitive processing that
an un-batched RL algorithm is much more cogni-
tively sound of a model. Further, as far as we are
aware, there is no concrete evidence that relative
learning speeds between various populations in a
batched setting will hold in an un-batched setting.
As such, we refrained from making any cognitive
conclusions from our batched learning speeds. Re-
grettably, due to computational constraints, training
all our populations in an un-batched setting would
take months to years longer than was possible for
us to train. Consequently, we were fundamentally
unable to test a core idea of our hypothesis, which
was that idiolects provide natural "mutations" in
language, allowing for faster evolution and adap-
tation to new environments. Instead, we were left
only able to evaluate our agents on the stop-gap
zero-shot tasks, which, as expected and previously
addressed in furthur detail, did not turn up any sig-
nificant differences between populations.

Future work on this topic could address this,
developing simulations in which valid cognitive
conclusions could be made regarding population
learning speed, whether merely training in an un-
batched manner, or devising some other method to
study this factor.

In hindsight, another limitation of this study was
the use of a communication vector which both al-
lowed continuous values in each channel, and was
high-dimensional. This high-dimensional, continu-
ous signalling allowed our agents to develop com-
munication strategies which did not explicitly map
specific communications to meanings, as human
language does. Instead our populations mapped
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Figure 5: Agent Communication Channels. Values in
the channels of a given agent’s communication vector
throughout an example roll-out.

continuous changes in specific channels to mean-
ing. This can be better viewed in Figure 5 in which
we plot the values in each channel of a given agent’s
communication over the course of a roll out. Here,
it is clear that the signalling that is occurring is
not via discrete communications, as words and sen-
tences are in human language, but by continuous
changes in a given channel. This suggests that the
communication aspect of our modeling is not com-
pletely representative of human language. One way
future work may address this problem by lessening
the dimensionality of the communication vector,
and enforcing discrete values in each channel. This
could perhaps lead to the development of more hu-
man traits in the language, as Mordatch and Abbeel
(2018)’s work suggests that limiting the "vocabu-
lary" for agents leads to enhanced compositionality
in their communications. Further ideas for develop-
ing more "natural" language is discussed in work
such as Kottur et al. (2017), and is worth integrating
into future simulations.

Another avenue of exploration, informed by
work from Piantadosi et al. (2012), might ap-
proach this problem from an opposite direction.
Instead of directly simulating idiolects in the train-
ing paradigm, one could train multiple populations
from similar starting points, with varying costs on
their communication function. One could then try
to evaluate whether idiolects and ambiguity arise
in some due to a pressure for greater linguistic ef-
ficiency. This methodology does, of course, come
with its own issues chief among them being the
ideas that "words are cheap". Different words do
not necessitate the same physical capacity as traits
in other species which could be modeled utiliz-
ing costs — as can be done with mating rituals or



parental care of young. This phenomena makes
it particularly hard to design a meaningful cost
function with which we can drive idiolectic de-
velopment. Another issue is that it is not imme-
diately clear how to measure linguistic efficiency,
with work from Coupé et al. (2019) suggesting
that many languages encode information at simi-
lar information rates, despite their clear linguistic
differences. As such, it would be particularly diffi-
cult to design metrics which measure the linguistic
efficiencies of these potential final languages.

A final avenue we see for potential future work
concerns treating the amount of noise in the chan-
nel as a hyper-parameter, or even a random vari-
able. We select the scaling value of % for our
"good-enough" communication noise somewhat
arbitrarily, wanting to select a value which was
large enough to make a difference to the communi-
cation, but small enough to not completely corrupt
the channel. Future work may try varying this com-
pletely to gain better intuition into how this value
effects our various populations and tasks.

5 Conclusion

In sum, our simulations provide evidence that idi-
olects likely provide multiple benefits to evolving
languages. In particular, we find they contribute to
the development of languages not over-fit to the en-
vironments witnessed during evolution, and further
that they aid in driving the evolution of languages
robust to external communication failures.
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A Appendix - Training Hyper-Parameters

gamma: 0.9

lr: 0.00005

adam_eps: 0.000001

clip_grad_norm: True

clip_grad_val: 5

soft_target_update: True

polyak_tau: ©.005

hard_target_update_frequency: 5

exploration_eps_init: 0.8

exploration_eps_end: 0.01

exploration_anneal_frames: 1_000_000

max_n_frames: 10_000_000

off_policy_collected_frames_per_batch:
6000

off_policy_n_envs_per_worker: 60

off_policy_n_optimizer_steps: 1000

off_policy_train_batch_size: 128

off_policy_memory_size: 1_000_000

checkpoint_interval: 300_000

B Appendix - Numerical Values for
Evaluations of Populations on
In-Distribution Environments

Checkpoint | Shared Noise Shared Noiseless Unshared Noise | Unshared Noiseless
300,000 [-262.78 = 454.276 | -333.714 - 448.376 [ -381.738 £ 281.134 | -250.189 + 206.438
600,000 |-147.626 £ 16.288 | -272.513 4 535.208 | -329.255 £ 189.334 | -205.563 + 279.538
900,000 |-138.172 + 19.519] -292.733 £ 598.28 | -288.663 & 327.983 | -138.792 &+ 11.094

1,200,000 |-125.307 £ 27.138 | -140.134 & 7.247 |-214.815 4 321.981 | -138.186 £ 20.629

1,500,000 [-117.412 +66.899 | -127.968 + 46.261 [-179.387 +208.939 | -118.199 + 34.311

1,800,000 | -96.684 & 64.702 | -120.381 £ 86.994 | -121.796 £37.3 | -102.629 £ 48.065

2,100,000 | -83.442 4+ 71.088 [-100.948 £ 101.303 | -106.602 £ 58.202 | -81.474 £29.354

2,400,000 | -71.031 & 65.205 | -88.963 & 99.997 | -88.386 4 56.406 | -68.622 &+ 12.041

2,700,000 | -60.776 &+ 45.935 | -79.083 £92.719 | -73.915 £ 48.479 -59.232 £7.944

3,000,000 | -55.497 £33.594 | -68.59 £ 64.698 -64.232 £+ 41.795 -54.78 £ 1.589

3,300,000 | -52.508 & 16.538 | -61.191 +39.744 | -54.361 & 14.354 -53.327 £ 1.132

3,600,000 | -49.134 +6.275 | -56.989 £ 26.146 | -49.682 & 10.468 -52.449 £3.976

3,900,000 | -48.009 +6.776 | -53.516 £ 18.138 -48.231 £5.72 -51.93 £1.936
4,200,000 -47.621 £2.07 -52.431 £ 12.555 -46.159 £2.723 -51.648 £2.38
4,500,000 | -49.456 +9.406 | -51.541 4 12.162 -45.478 £ 2.605 -52.306 + 3.008
4,800,000 | -46.745 £ 6.805 -50.877 £ 8.321 -45.528 £+ 3.531 -50.583 + 1.289
5,100,000 | -45.769 + 4.303 -49.869 £ 9.447 -44.945 £ 0.702 -49.721 £0.797
5,400,000 | -45.168 £4.714 -49.93 £8.76 -44.037 £+ 0.963 -49.16 £ 1.061

C Appendix - Numerical Values for
Evaluations of Zero-Shot
Generalization to New Colors

Checkpoint Shared Noise Shared Noiseless Unshared Noise | Unshared Noiseless

300,000 |-261.812 + 460.153 [ -339.496 + 425.395 | -382.414 + 279.709 | -248.817 + 209.382

600,000 | -151.037 & 25.128 | -281.636 + 514.422 ] -319.989 £ 208.89 | -212.994 + 268.554

900,000 -142.477 £ 14.547 [ -294.705 4 595.838 | -288.403 + 316.584 | -145.45 £ 11.337

1,200,000 | -131.035 4+ 15.353 | -146.802 & 5.867 |-214.006 £ 318.971 | -146.018 & 10.979

1,500,000 | -142.044 £7.749 | -140.604 £ 12.632 [-186.769 £ 207.135] -141.995 £ 17.021

1,800,000 -147.457+£22.9 | -147.927 £ 18.624 | -136.926 £ 12.613 | -140.929 £ 6.818

2,100,000 | -146.756 £45.838 | -145.98 £17.692 | -142.888 £ 11.729 | -145.073 £5.13

2,400,000 | -150.196 + 35314 | -144.012 +7.735 | -150.201 + 12.032 | -144.826 + 5.236

2,700,000 | -155.504 £ 18.466 | -145.725 £ 10.986 | -154.559 £5.296 | -144.801 £8.233

3,000,000 | -158.476 +2.476 | -147.12 £10.249 | -156.347 £7.527 | -144.885 + 11.032

3,300,000 | -161.849 £ 10.07 | -142.852 +4.449 | -156.492 £6.048 | -145.806 + 10.433

3,600,000 | -161.845+6.825 | -145.374 +£2.657 | -157.131 £4.223 | -146.667 £ 5.539

3,900,000 -161.589 + 1.41 -146.143 + 4.829 -156.16 £4.429 | -147.929 + 11.053
4,200,000 | -162.544 £ 1.047 | -147.926 & 3.695 -157.45 £3.901 -146.03 +8.204
4,500,000 -165.6 4 6.353 -145.598 + 6.214 | -157.417 £5.929 | -146.442 £9.504

4,800,000 | -167.063 £ 13.164 | -146.01 £0.629 | -156.379 £ 10.924 | -144.911 + 15.931

5,100,000 | -168.136 + 16.526 | -145.357 + 1.332 -156.02 £7.536 | -145.633 + 13.604

5,400,000 | -166.519 £ 12.136 | -146.755 +£3.674 | -157.427 £6.602 | -145.971 £ 11.602
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