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Abstract

Large Language Models (LLMs) have emerged
as powerful sources of evidence for linguists
seeking to develop theories of syntax. In this pa-
per, we argue that causal interpretability meth-
ods, applied to LLMs, can greatly enhance the
value of such evidence by helping us character-
ize the abstract mechanisms that LLMs learn
to use. Our empirical focus is a set of En-
glish filler–gap dependency constructions (e.g.,
questions, relative clauses). Linguistic theo-
ries largely agree that these constructions share
many properties. Using experiments based in
Distributed Interchange Interventions, we show
that LLMs converge on similar abstract analy-
ses of these constructions. These analyses also
reveal previously overlooked factors – relating
to frequency, filler type, and surrounding con-
text – that could motivate changes to standard
linguistic theory. Overall, these results suggest
that mechanistic, internal analyses of LLMs
can push linguistic theory forward.

1 Introduction

Language models can generate and process utter-
ances typically thought to require rich linguistic
grammatical structure (Futrell et al., 2019; Wilcox
et al., 2018; Manning et al., 2020; Hu et al., 2020),
including much-studied syntactic constructions
like long-distance filler–gap constructions (Wilcox
et al., 2024). These results have been taken to chal-
lenge claims that these phenomena can be learned
only with strong innate priors (Piantadosi, 2023;
Futrell and Mahowald, 2025).

Despite the strong performance, questions re-
main as to whether models acquire syntax in ways
that are posited by linguists to be human-like (e.g.,
acquiring rich grammatical abstraction and syntac-
tic structure). Causal interpretability methods now
make it possible to characterize the abstract mecha-
nisms underlying neural networks (Vig et al., 2020;
Finlayson et al., 2021; Geiger et al., 2021; Meng

Minimal pairs: Embedded Wh-Question

b I know that the man likes →
him (yb)

.

s I know who the man likes →
him

. (ys)

Minimal pairs: Cleft

b It is clear the man likes →
him (yb)

.

s It is him the man likes →
him

. (ys)
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Figure 1: Causal intervention overview. Here, we
illustrate our methodology when we intervene within a
class, transferring an embedded wh- filler–gap structure
into a corresponding minimal pair that didn’t previously
have one. We then show intervening across classes,
inserting a wh- filler–gap into a gap-less cleft sentence

et al., 2022; Geiger et al., 2023; Wang et al., 2023).
These methods have revealed non-trivial linguis-
tic syntactic structure is learned by models (Arora
et al., 2024; Lasri et al., 2022; Finlayson et al.,
2021; Mueller et al., 2022; Lakretz et al., 2019).
But a key hypothesis in the history of linguistics
is that seemingly different linguistic constructions
can share underlying structure. For instance, com-
pare “I wonder what the lion ate.” to “It was the
gazelle that the lion ate.” The former is an embed-
ded wh- clause and the latter is a cleft construction.
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These are distinct constructions but share some-
thing in common: both have a long-distance depen-
dency with an extracted element, often specified
with a linguistic trace: “I wonder whatt the lion
ate ___t.” and “It was the gazellet that the lion
ate ___t.” Thus, many linguistic theories predict
common processing characteristics between these
sentences (Fodor, 1989). On the other hand, there
is also reason to expect wh- sentences to be quite
different from clefts since both wh- elements and
clefts have idiosyncratic properties (Ross, 1967;
Culicover, 1999; Ginzburg and Sag, 2001).

To tackle these questions, we take advantage of
advances in large open source models as well as ad-
vances in mechanistic interpretability, specifically
the Causal Abstraction framework (Geiger et al.,
2023) and Distributed Alignment Search (DAS;
Geiger et al. 2024). Our resulting methodology
gives us direct access to the abstract causal mecha-
nisms learned by these models. By accessing these
causal mechanisms, we can take a filler-gap mech-
anism learned on Construction A (e.g., wh- sen-
tences), transfer it to Construction B (e.g., clefts),
and see if we get predictable filler–gap behavior
(see Figure 1). If we do, this would be strong evi-
dence of underlying shared structure learned by the
model.

Importantly, this method gives us a gradient mea-
sure of transfer. As such, we explore whether more
similar constructions transfer more readily to each
other; whether some constructions in general tend
to serve as sources of transfer; whether mecha-
nisms transfer across clauses; and whether transfer
is greater when lexical items are shared across con-
structions (an effect predicted by the “lexical boost”
in syntactic priming, whereby syntactic structures
are primed more strongly when there is lexical over-
lap Pickering and Branigan, 1998).

Ultimately, we find strong generalization in LMs
across a range of filler–gap constructions, with ef-
fects observed at all positions within constructions.
We observe lexical boost: effects are stronger when
lexical items match (e.g., the same animacy). More-
over, we identify source constructions whose un-
derlying mechanisms generalize broadly, as well
as sink constructions that consistently benefit from
such transferred mechanisms. Finally, we provide
evidence that such generalization does not seem to
extend across clausal boundaries.

We claim these experiments make good on the
promise that studying LMs can help us better un-
derstand linguistic structure and language learning

in general by not just serving as proxies for data-
driven learners, but by helping us develop linguisti-
cally interesting hypotheses (Futrell and Mahowald,
2025; Portelance and Jasbi, 2024; Potts, 2023).1

2 Filler–Gaps and Neural Models

Consider the following sentence:

(1) [The bagel]t, I liked __t.

The embedded clause, I liked, seems incomplete,
lacking an object. However, the sentence is gram-
matical, as the fronted entity the bagel is under-
stood to be the object of the anteceding clause.

Grammatical constructions of this nature are
termed filler–gaps, due to constituents appearing
as ‘fillers’ in non-canonical positions, colloquially
being said to leave a ‘gap’ at its canonical position.
This grammatical family encompasses a wide range
of common constructions including wh-questions,
relative clauses, clefts, and more.

Filler–gap dependencies have long been a target
of linguistic inquiry. They are believed to require
sophisticated syntactic machinery, beyond simple
surface statistics, since a word might appear quite
linearly far from a word that it depends on for its
meaning (Chomsky, 1957; Ross, 1967). They have
been of interest in computational linguistics for the
same reason: earlier models like n-gram models
were fundamentally unable to handle structures
over long distances.

Hence, filler–gaps have served as a common test-
bed for LMs’ grammatical capacities. Wilcox et al.
(2018) provided early positive evidence of RNN’s
grammatical competence in English by comparing
LMs’ surprisals for gap and gapless continuations
in the presence and absence of fillers. More re-
cently Ozaki et al. (2022) and Wilcox et al. (2024)
have demonstrated LM sensitivities to linguistic
constraints on these constructions. Kobzeva et al.
(2023) found mixed results in Norwegian, a lan-
guage known to have very different filler–gap struc-
tures and constraints than English.

There has been further work to measure the gen-
eralization capacities of LMs across filler–gap con-
structions. Lan et al. (2024) test models’ knowl-
edge of parasitic gaps and across-the-board move-
ment, finding that unless the training data is sup-
plemented with adequate examples, LMs struggle
to learn these constructions from small corpora.
Howitt et al. (2024) build on the methodology of

1Code will be released with final version.
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Construction Prefix Filler NC Article NP Verb Label

Emb. Wh-Question (Know-Class) I know who/that the man liked ./him
Emb. Wh-Question (Wonder-Class) I wonder who/if the man liked ./him
Matrix Wh-Question Who/"" did the man like ?/him
Restrictive Relative Clause The boy who/and the man liked was/him
Cleft It was the boy/clear that the man liked ./the boy
Pseudo-Cleft Who/That the man liked was/it
Topicalization Actually, the boy/"" the man liked ./the boy

Subject-Verb Agreement The boy/boys that the man liked is/are
Transitive/Intransitive Verbs Last night/Yesterday some/that man/boy ran/liked ./him

Table 1: Exemplar minimal pairs for each evaluated construction’s single-clause, animate extraction variant. The
filler/label combinations are used to evaluate whether the model is processing the construction correctly and whether
our causal interventions are successful. The final two constructions are used as control conditions. For a full set of
examples, including the multi-clause and inanimate extraction variants, see Appendix A.

Lan et al. (2024), training LSTMs on specific filler–
gap constructions and evaluating LM performance
on others, with results suggesting little generaliza-
tion in LMs. Prasad et al. (2019) and Bhattacharya
and van Schijndel (2020) further use a methodology
based on psycholinguistic priming to explore filler–
gap generalization in LMs, with the former finding
evidence suggesting that LMs hierarchically orga-
nize relative clauses in representation space, and
the latter finding general representations for filler–
gaps which are shared across various constructions.

These previous works show LMs can learn to
process filler–gap constructions, but show more
mixed results as to whether this processing is
shared across constructions. But most of this work
has been behavioral, without exploring the model’s
underlying causal mechanisms. Our work fills this
gap. We first uncover the causal mechanisms LMs
learn to process various filler–gap dependencies,
and then we measure to what extent these mecha-
nisms generalize across different filler–gaps.

3 Methods

3.1 Data
Evaluated Constructions We focus our inves-
tigation on seven filler–gap constructions: em-
bedded wh-questions with a finite complemen-
tizer (denoted as the know-class), embedded wh-
questions with a non-finite complementizer (won-
der-class), matrix-level wh-questions, restrictive
relative clauses, clefts, pseudo-clefts, and topical-
ization. For each construction, we design sentential
templates in the style of Arora et al. (2024), allow-
ing us to sample a large number of minimal pairs
differing in our targeted grammatical phenomenon.

We design four templates per construction, dif-
fering in the extracted object’s animacy and by the

number of clausal boundaries between the filler and
the gap left by its extraction (one or two clauses).
We manipulated animacy since changing animacy
requires changing the key wh- element (“who” vs.
“what”), but is not hypothesized to affect the sen-
tence’s structure. All our templates involve the
extraction of a direct object from a verb phrase
and all follow a general template, allowing cross-
construction alignment by position. Our general
template, as well as examples of animate extraction
from a single-clause variant of each construction,
are in Table 1.

Controls Our first control is the task of subject–
verb number agreement (e.g., “The boy is”, not
“The boy are”). This task was selected because,
relative to our constructions of interest, there is a
similar distance between the subject and the verb.
However, while subject–verb agreement can oper-
ate over long linear distances, it does not have the
filler–gap property of our target constructions (as
agreement is always between clausemate elements)
and thus we hypothesize that it should not rely on
the same mechanism.

The second control is the task of predicting a
continuation after transitive or intransitive verbs.
This task controls for the predicted label, ensuring
that any generalization we find is meaningful, not
merely due to heuristics related to the predicted
labels. In order to maintain the distance between
minimal contrast and prediction location, we have
lexical items in faux-contrast at the FILLER, ARTI-
CLE, NP positions, such that there is no meaningful
difference in the sampled items at those positions.

3.2 Distributed Alignment Search

To localize internal mechanisms used by LMs to
process our constructions of interest, we use Dis-
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tributed Alignment Search (DAS; Geiger et al.
2024; Wu et al. 2023). DAS is a supervised in-
terpretability method that can be used to assess
whether a given feature is encoded in a particu-
lar set of neural activations. We rely on the 1-
dimensional variant of DAS used by Arora et al.
(2024). The core intervention performed is

b+ (sa⊤ − ba⊤)a

where b ∈ Rn is a representation formed by the
model when it processes a base example (right
sides in Figure 1), and s ∈ Rn is the corresponding
representation formed when the model processes
a source example (left sides in Figure 1). In our
experiments, b and s are always the outputs of a
Transformer block. Intuitively, this intervention
defines a direction in the rotated feature space de-
fined by the learned vector a ∈ Rn. This is a soft
intervention targeting only the learned feature and
preserving orthogonal dimensions of b. In DAS,
all LM parameters are kept frozen, and a is learned
via a standard cross-entropy loss trained on inter-
ventions of the sort depicted in Figure 1. The goal
of learning is to make the correct predictions under
the intervention. For example, in the within-class
intervention in Figure 1, we seek to learn an in-
tervention that predicts a gap site (signaled by a
period) even though the inputs correspond to a non-
filler–gap case. The extent to which we can learn
such an intervention provides the basis for assess-
ing the hypothesis that the filler–gap dependency
itself can be localized to the intervention site.

We chose to use DAS for two main reasons. First,
Arora et al. (2024) demonstrate that, in a compari-
son among several interpretability methods, DAS
consistently performed the best in finding causally
efficacious features in syntactic tasks. Second,
Wu et al. (2023) show that the feature-alignments
learned by DAS are robust and generalize strongly.
Training We train interventions at each position
from the FILLER onwards, and across every layer of
our given LM. We use the pythia series of models
(Biderman et al., 2023), a series of open-source,
open-data LLMs. We run our experiments on the
1.4, 2.8 and 6.9 billion parameter models. We find
qualitatively similar results for all sizes, reporting
those of the 1.4b variant in the main text (results
for 2.8b and 6.9b variants in Appendix H).

We evaluate two distinct categories of interven-
tions: (1) single-source interventions, where for
each of the n constructions, ci<n, the training

dataset for DAS contains sentences sampled from
the templates of ci, and (2) leave-one-out construc-
tion interventions, where for each of the n construc-
tions, ci<n, the training dataset contains sentences
sampled from the templates of cj ̸=i – that is, all
constructions that are not ‘left-out’.

Evaluation For evaluation, we use the ODDS met-
ric from Arora et al. (2024). This metric measures
how much more likely a counterfactual label is af-
ter performing an intervention, with higher ODDS
denoting larger causal effect from the given inter-
vention. Intuitively, it tells us: after intervention,
how much more likely is the continuation expected
based on the “source sentence” than the one naively
expected based on the “base sentence”. We mea-
sure the average ODDS at each position-layer pair
across 400 sentences, sampled from the templates
of each individual construction.

In cases of aggregation, we max-pool the av-
erage ODDS value across layers at each sentential
position (we refer to this metric as MAX ODDS here-
after). We also normalize the MAX ODDS by the
corresponding average MAX ODDS for the items
present in the training set, with this normalization
giving us a measure of how much the mechanisms
used by a given set of constructions generalize to an
evaluated construction, relative to how much they
generalize to those they were trained on. We aggre-
gate across layers by max-pooling ODDS because
our causal methodology aims to localize syntactic
features in the model, with the maximum value rep-
resenting the most causally efficacious localization
of the given features.

4 Exp. 1: Do LMs Share Filler–Gap
Mechanisms Across Constructions?

Our first experiment investigates the extent to
which language models employ common mech-
anisms for processing different filler–gaps.

Setup We measure the MAX ODDS for all trained
interventions evaluated on every construction of the
same clausal category (for a discussion on cross-
clause generalization see §6). We then group these
values into six categories, depending on the rela-
tion between the set of constructions the interven-
tions were trained on and those used to generate
the evaluation set. These groups comprise (1) the
same set of constructions in the training set and
the evaluation set, with the same animacy – this
is our reference group as training and evaluation
sentences are drawn from the same distribution; (2)
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{filler} the {np} {verb}

0.00
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Same Animacy, Not in Train Set

Difference Animacy, Not in Train Set

Same Animacy, In Train Set

Different Animacy, In Train Set

Controls

Lexical Controls

Average Max Odds by Position

Figure 2: Average normalized MAX ODDS across positions, ±1 standard error. Corresponding multi-clause plots
can be found in Appendix E. Note that normalization fixes the “Same Animacy, In Train Set” condition at 1.00.
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Figure 3: For each source construction, we measure the
ODDS at each position layer pair, aggregating the values
by evaluation group. Corresponding plots with control
values and multi-clause variants are in Appendix E.

the same set of constructions in training set and
evaluation set, with different animacy; (3) evalu-
ation on the held-out constructions, but with the
same animacy as the training set; (4) evaluation on
the held-out constructions, and differing animacy
from the training set; and (5–6) the two controls.

Hypothesis We hypothesize that the MAX ODDS
for all our targeted evaluation groups will be greater
than that of the controls. We further expect MAX
ODDS to be higher when the evaluated construc-
tions are in training or match in animacy.

Results Figure 2 shows the average MAX ODDS
of the aforementioned groups at each position in
our single-clause templates. In both these single-
clause variants and the embedded-clause variants
of our constructions (corresponding figure in Ap-
pendix E), we find consistently high MAX ODDS
values for each of the aforementioned non-control
groups. The controls show significantly less trans-
fer. We run pairwise t-tests with a Holm-Bonferroni
correction, finding the MAX ODDS of each of our
test groups is significantly higher than both con-
trols at every position in the single clause templates
and nearly every position in the multi-clause ones.
These results strongly suggest shared internal rep-
resentations across filler–gap constructions in
the evaluated models.

To test our hypotheses regarding the effect of
training and evaluation set overlap and matching
animacy, we fit a linear mixed-effects regression
model to our MAX ODDS data at each position.
Our random effects comprise intervention training
set, and evaluation construction, and our fixed ef-
fects take the form of binary indicator variables
for (1) whether the evaluated construction was in
the training set and (2) whether the animacy con-
dition of the evaluated construction matches that
of the training set. We find significant, positive,
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effects for overlap, matching animacy, and their in-
teraction at the FILLER, THE, and NP positions, and
for matching animacy at the VERB position. See
Appendix C.1 for regression details. Thus, across
positions, LM internal processing is sensitive to
linguistically meaningful features, such as ani-
macy of the extracted item (possible evidence of
“lexical boost”).

While we broadly see generalization as fitting
into held-out constructions (Figure 3), embedded
wh- questions and restrictive relative clauses show
noticeably less generalization than other construc-
tions. We briefly offer up two accounts for these
peculiarities: (1) there is asymmetry in LM gener-
alization between different filler–gap dependencies
or (2) these constructions are processed by largely
different mechanisms than the other constructions.
Clarifying which of these applies to each construc-
tion helps motivate our next experiment.

5 Exp. 2: What Factors Drive Filler–Gap
Generalization in LMs?

Our previous experiment demonstrated significant
overlap between the LM’s abstract representations
of various filler–gap constructions. However, we
also observed notable variation in the strength of
this generalization across positions and construc-
tions. Here, we attempt to characterize the nature
of this cross-construction generalization. In par-
ticular, we attempt to identify whether there exist
constructions which serve as sources (their filler–
gap properties transfer well to other constructions)
or sinks (filler–gap properties from other construc-
tions transfer well to them). We further investigate
which features of natural language (e.g. distribu-
tional properties construction frequency, or linguis-
tic properties like the nature of the filler item) may
drive this generalization.

Setup To characterize the degree to which a given
construction is a source or sink, we perform the
following procedure. First, we evaluate all single-
source interventions on all constructions of the
same clausal length, averaging the normalized MAX
ODDS across the animacy-conditions at each posi-
tion, training construction, and evaluation construc-
tion triple. We take the resulting n×n matrix to be
an adjacency matrix for a weighted, directed graph
G = (V,E) in which vertex V is a construction
and each directed edge Ei,j is the transfer from
construction i to construction j. We then calculate
the out-degree centrality – the fraction of a graph’s
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Figure 4: Top: Generalization network at single-clause
THE position with edge-threshold of 1. Nodes size pro-
portional to in-degree, edge size and color proportional
to ODDS of the source construction’s interventions mea-
sured on the target construction. Bottom: In- and out-
degree centrality AUCs against construction frequency.

total a given node’s outgoing edges are connected
to – and in-degree centrality – the fraction of nodes
its incoming edges come from. We do this for
nodes (constructions) across a range of edge thresh-
olds – that is, the minimum edge weight retained
in the graph. We measure each construction’s area
under the threshold-centrality curves (AUC). The
resulting out- and in-degree AUCs serve as proxies
for the degree to which a given construction is a
source or sink respectively. We provide a repre-
sentative generalization network (for the THE po-
sition) in Figure 4. That figure shows particularly
strong transfer into pseudoclefts, very little transfer
into either control, strong within-construction tran-
fser (dark recurrent arrows), and some non-random
structure of transfer across constructions.

We also analyzed the effect of construction fre-
quency on generalization capacity. We extracted
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estimates of each construction’s prevalence in
the English-EWT Universal Dependencies dataset
(De Marneffe et al., 2021; Nivre et al., 2020; Sil-
veira et al., 2014). See Appendix D for details.

We further investigate the effects of four param-
eters of linguistic variation across filler–gap con-
structions: the nature of the filler, whether the head
daughter is inverted, the syntactic category of the
mother (the word under which a construction is
embedded), and the semantic/pragmatic nature of
the construction (whether the fronted element is
fronted by necessity or for discourse reasons). At
each position, we fit a linear mixed-effects model
with binary indicator variables denoting whether
the source and evaluated construction match for
each of the above posited parameters of variation
as fixed effects, with random effects for training-
source construction, and evaluated construction.
For regression details, see Appendix C.2.

Hypothesis We expect to see specific construc-
tions serving as strong sources and others as strong
sinks in the generalization network. We further
expect a positive relationship between a given con-
struction’s frequency and the degree to which it is
a source, and conversely, a negative relationship
between its frequency and its sink-ness. Finally, we
anticipate stronger generalization between linguis-
tically similar constructions than dissimilar ones.

Results Figure 4 shows construction frequency
against in-degree and out-degree AUCs, mean-
pooled across sentence positions. Constructions
are spread across the AUC axis, suggesting varying
levels of generalization. These AUCs are consistent
across both sentence position and clausal variant
(single and multi-clause AUCs, faceted by position
are available in Appendix F).

Figure 4 also shows a negative relationship be-
tween construction frequency and in-degree AUC
and a (weak) positive relationship between con-
struction frequency and out-degree AUC. There are
some notable exceptions to these trends, such as
the low-frequency topicalization construction hav-
ing a surprisingly low in-degree AUC and the most
frequent construction, restrictive relative clauses,
having a low out-degree AUC. Below, we argue
that these anomalies are linguistically explainable.

We further find evidence supporting our hypoth-
esis that linguistic similarity aids generalization
between constructions. Our regression reveals sig-
nificant, positive effects for filler type at the FILLER

and THE positions, inversion of the head daughter

and nature of the fronted element at the FILLER,
THE, and NP positions, and syntactic category of
the mother at all positions.

Discussion These results paint a clear picture of
filler–gap generalization in LMs. Frequent con-
structions are encountered at a high-enough rate
during training so as to drive the development of
robust mechanisms to process them. Less frequent
constructions are not encountered enough for stand-
alone, robust, processing mechanisms to form. In-
stead, their processing relies on the mechanisms of
more frequent, linguistically similar constructions.

These analyses shed light on the anomalous re-
sults. For instance, we observed a low in-degree
AUC for the low-frequency construction topical-
ization. Topicalization is linguistically dissimilar
to higher-frequency constructions, being the only
construction with a phrasal element at its filler site,
and it generally shares very few linguistic features
with more frequent constructions. In this light, its
low in-degree AUC is not surprising, especially
when compared to pseudoclefts, which much more
closely resemble higher-frequency constructions
(especially wh-questions).

Similarly, restrictive relative clauses are the only
constructions which are embedded under a noun
phrase, possess a wh-item at the filler position, and
have their filler item fronted out of syntactic ne-
cessity, not for discourse purposes. This makes
them linguistically dissimilar to many of the lower
frequency constructions along the features found
important by our mixed-effects model. As such,
despite their high frequency, their mechanisms do
not transfer broadly to these constructions, leading
to a relatively low out-degree.

These results also answer the questions posed
at the end of Experiment 1. Namely, embedded
wh-questions and restrictive relative clauses show
little generalization in the leave-one-out setting,
as they are frequent enough to largely not rely on
the processing mechanisms of other constructions.
However, embedded wh-questions possess enough
linguistic overlap with less frequent constructions
to aid in their processing, whereas restrictive rela-
tive clauses are more isolated in the generalization
network due to their linguistic dissimilarities.

6 Exp. 3: Do Language Models
Generalize Across Clausal Boundaries?

Our first two experiments demonstrate that LMs
share processing mechanisms across various filler–
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{filler} the_1 {np1} {verb1} that the_2 {np2} {verb2}
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Embedded −> Embedded Controls Lexical Controls Single −> Embedded

Average Max Odds Across Position

Figure 5: MAX ODDS ±1 standard error, by position for interventions (1) trained and evaluated on multi-clause
variants, (2) trained on single-clause variants and evaluated on multi-clause variants, and (3-4) controls.

gap constructions of the same clausal length. In
this section, we analyze whether our constructions’
single-clause processing mechanisms are used to
process both clauses in the multi-clause variant.

Set-Up We evaluate the interventions trained at
each position of the single-source variants on the
corresponding positions in the matrix and embed-
ded clause of the same construction’s multi-clause
template. We compare the by-position MAX ODDS
values to the corresponding values of interventions
trained and evaluated on the multi-clause variants.

Hypothesis Under a purely modular account of
syntactic structure, we expect to see generalization
across clausal boundaries. That is, we expect the
single-clause interventions to show above-chance
MAX ODDS when evaluated on both the matrix and
embedded clause of our multi-clause variants.

Results Our results are displayed in Figure 5.
Our single-clause mechanisms show above-chance
MAX ODDS at the FILLER through NP1 positions
of the matrix clause, before dropping off at the
VERB1 through THE2 positions, and then slowly
rebounding as we move towards the final VERB2.

These results make sense when we consider the
relative sentential structures of single-clause and
multi-clause sentences, and the auto-regressive na-
ture of the LMs we study. Primarily, the first
three positions of a multi-clause sentence – that
is, FILLER, THE1, and NP1 – are indistinguish-
able from the first three positions of a singular-
clause sentence. As such, we would expect an
auto-regressive LM, processing from left-to-right,
to not be aware that it is processing an embedded
clause until it reached the VERB1 position. Until
then, it will use the same mechanisms it would to
process a sentence with a single clause. This is
reflected in the strong generalization through these
first three positions.

In the VERB1 position, however, single-clause
and multi-clause sentences have verbs that sharply

diverge in their semantic character and syntactic
properties. Specifically, the verbs at this position
in a multi-clause sentence must be ones which can
embed a clause (e.g. say, know, and wonder, among
others), whereas in a single-clause sentence this is
not necessary. As such, upon encountering this
position, the LM encounters a different set of verbs
than it was trained on, leading to a drop in the
single-clause intervention’s MAX ODDS.

As the LM processes the next couple of positions
(THAT, THE2, and NP2), we see the single-clause
intervention’s MAX ODDS steadily increasing, as
the LM gets closer to a position where it can poten-
tially discharge its filler. This process culminates
at the VERB2 where we see clear, above-chance,
generalization from the single-clause mechanisms
to the embedded-clause.

7 Conclusion

Long-held views in linguistics suggest that there
should be common processing characteristics
across diverse filler–gap constructions. We found
this to be the case: we were able to transfer the
filler–gap property across neural representations
of different filler–gap constructions, suggesting
that neural models rely on similar representations
across distinct constructions.

This transfer is not entirely uncomplicated, how-
ever: transfer was stronger when animacy matched
and less strong when animacy did not match even
within a construction. This was true even though
animacy is not a key part of the usual account of En-
glish filler–gap constructions. We also found that
some constructions were stronger sources of filler–
gap transfer than others — and others were stronger
sinks. Finally, we found that transfer across main
and embedded clauses was not strong. Taken to-
gether, these results show how mechanistic analysis
of LLMs can provide novel insights into the nature
of syntactic structures.
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8 Limitations

Our work is primarily an attempt to show that
LLMs can be useful tools for pushing linguistic
theory forward. This brings with it specific theoret-
ical presuppositions that are worth articulating to
avoid a suggestion that there is scientific consensus
where there is not.

Our investigation is oriented toward finding evi-
dence of modular structure in LLMs. However, it
is not a settled question what constitutes rule-like
or systematic linguistic behavior in neural systems
(Geiger et al., 2024; Nefdt, 2023; Buckner, 2024;
Futrell and Mahowald, 2025). How causally sys-
tematic should a syntactic behavior be for it to be
rule-like? One reading of our results would be that
our causal interventions capture human filler–gap
behavior but noisily (e.g., imperfect transfer across
constructions, less transfer when animacy differs).

This is possible, but another reasonable interpre-
tation is that the relevant constructs are also fuzzy
in humans. Despite a historical proclivity for rules,
nearly all syntactic theories allow for numerous
exceptions, and human behavior itself is variable
and subject to errors. As such, the questions we
ask regarding the rule-like nature of LLMs extend
beyond such models, becoming broader questions
about human processing and behavior. Our findings
alone cannot adjudicate these questions, though.

We also note that our results are only in English.
It would be valuable to extend to other languages,
particularly those with typologically different filler-
gap patterns.

We relied here on templatically generated sen-
tences, which are known to differ in systematic
ways from naturally occuring sentences. We would
like to extend this work to naturalistic sentences,
but doing so is challenging because of the strong
constraint that we have matched pairs.

Acknowledgments

We would like to thank Qing Yao and, more
broadly, the computational linguistics research
group at UT Austin for their helpful conversations
regarding this project. We further acknowledge
funding from NSF CAREER grant 2339729 (to
Kyle Mahowald).

References
Aryaman Arora, Dan Jurafsky, and Christopher Potts.

2024. CausalGym: Benchmarking causal inter-

pretability methods on linguistic tasks. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 14638–14663, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Dale J. Barr, Roger Levy, Christoph Scheepers, and
Harry J. Tily. 2013. Random effects structure for
confirmatory hypothesis testing: Keep it maximal.
Journal of Memory and Language, 68(3):255–278.

Debasmita Bhattacharya and Marten van Schijndel.
2020. Filler-gaps that neural networks fail to gen-
eralize. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
486–495, Online. Association for Computational Lin-
guistics.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. Preprint, arXiv:2304.01373.

Cameron J Buckner. 2024. From deep learning to ra-
tional machines: What the history of philosophy can
teach us about the future of artificial intelligence.
Oxford University Press.

Noam Chomsky. 1957. Syntactic Structures. Walter de
Gruyter.

Peter W. Culicover. 1999. Syntactic Nuts: Hard Cases,
Syntactic Theory, and Language Acquisition. Oxford
University Press, Oxford.

Marie-Catherine De Marneffe, Christopher D Manning,
Joakim Nivre, and Daniel Zeman. 2021. Universal
dependencies. Computational linguistics, 47(2):255–
308.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 1828–1843, Online. Association for
Computational Linguistics.

Janet Dean Fodor. 1989. Empty categories in sentence
processing. Language and Cognitive Processes, 4(3-
4):SI155–SI209.

Richard Futrell and Kyle Mahowald. 2025. How linguis-
tics learned to stop worrying and love the language
models. arXiv preprint arXiv:2501.17047.

Richard Futrell, Peng Qian, Edward Gibson, Evelina
Fedorenko, and Idan Blank. 2019. Syntactic depen-
dencies correspond to word pairs with high mutual in-
formation. In Proceedings of the Fifth International

9

https://doi.org/10.18653/v1/2024.acl-long.785
https://doi.org/10.18653/v1/2024.acl-long.785
https://doi.org/10.18653/v1/2020.conll-1.39
https://doi.org/10.18653/v1/2020.conll-1.39
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144


Conference on Dependency Linguistics (Depling,
SyntaxFest 2019), pages 3–13, Paris, France. Associ-
ation for Computational Linguistics.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep
Chaudhary, Sonakshi Chauhan, Jing Huang, Arya-
man Arora, Zhengxuan Wu, Noah Goodman, Christo-
pher Potts, et al. 2023. Causal abstraction: A the-
oretical foundation for mechanistic interpretability.
arXiv preprint arXiv:2301.04709.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 34, pages 9574–9586.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah Goodman. 2024. Finding
alignments between interpretable causal variables
and distributed neural representations. In Causal
Learning and Reasoning, pages 160–187. PMLR.

Jonathan Ginzburg and Ivan A. Sag. 2001. Interroga-
tive Investigations: The Form, Meaning, and Use of
English Interrogatives. CSLI, Stanford, CA.

Katherine Howitt, Sathvik Nair, Allison Dods, and
Robert Melvin Hopkins. 2024. Generalizations
across filler-gap dependencies in neural language
models. In Proceedings of the 28th Conference on
Computational Natural Language Learning, pages
269–279, Miami, FL, USA. Association for Compu-
tational Linguistics.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

Anastasia Kobzeva, Suhas Arehalli, Tal Linzen, and
Dave Kush. 2023. Neural networks can learn patterns
of island-insensitivity in Norwegian. In Proceedings
of the Society for Computation in Linguistics 2023,
pages 175–185, Amherst, MA. Association for Com-
putational Linguistics.

Alexandra Kuznetsova, Per B Brockhoff, and Rune HB
Christensen. 2017. lmertest package: tests in linear
mixed effects models. Journal of statistical software,
82:1–26.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 11–20, Minneapolis, Minnesota.
Association for Computational Linguistics.

Nur Lan, Emmanuel Chemla, and Roni Katzir. 2024.
Large language models and the argument from the

poverty of the stimulus. Linguistic Inquiry, pages
1–56.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

Aaron Mueller, Yu Xia, and Tal Linzen. 2022. Causal
analysis of syntactic agreement neurons in multi-
lingual language models. In Proceedings of the
26th Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 95–109, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Ryan M Nefdt. 2023. Language, Science, and Structure:
A Journey into the Philosophy of Linguistics. Oxford
University Press.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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A Construction Templates

We provide templates and examples for our single-
clause inanimate extraction (Table 3), multi-clause
animate extraction (Table 4), and multi-clause inan-
imate extractions (Table 5). In these tables, we use
the shorthand demonstrated in Table 2 to refer to
our constructions.

Full Construction Shorthand

Emb. Wh-Question (Know-Class) Emb. Wh-Q (K)
Emb. Wh-Question (Wonder-Class) Emb. Wh-Q (W)
Matrix Wh-Question Matrix Wh-Q
Restrictive Relative Clause RRC
Pseudo-Cleft PC
Topicalization Topic

Subject-Verb Agreement SVA
Transitive/Intransitive Verbs T/I Verbs

Table 2: Abbreviations for syntactic constructions in
Tables 3 to 5.

B Training and Evaluation Details

We access the pythia models used in this study
through the transformers python package (Wolf
et al., 2020). For each construction, we build out
training sets as described by Arora et al. (2024),
sampling 200 sentences to form the basis of our
training set, before adding each sentence’s mini-
mal pair, resulting in perfectly balanced training
sets. To train DAS, we use the pyvene library (Wu
et al., 2024) and follow the hyperparameters used
by Arora et al. (2024).

Our evaluation sets for the pythia-1.4b models
used in the main text consist of 400 sentences, with
ODDS at each position-layer pair averaged across
all evaluation sentences. For the other model vari-
ants evaluated (pythia-2.8b and pythia-6.9b)
we use evaluation sets of 96 sentences due to com-
putational constraints, noting that this is still larger
than the prescribed size of 50 evaluation sentences
from Arora et al. (2024). We also ensure that the in-
tersection of train sets and evaluation sets is empty,
so as to not bias our evaluations. Our training and
evaluation ran on 2 NVIDIA A40 GPUs. For one
model size, training totaled ∼12 hours, and evalua-
tion ∼250 hours.
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Construction Prefix Filler NC Article NP Verb Label

Emb. Wh-Q (K) I know what/that the man built ./it
Emb. Wh-Q (W) I wonder what/if the man built ./it
Matrix Wh-Q What/"" did the man build ?/it
RRC The chair which/and the man built was/it
Cleft It was the chair/clear that the man built ./the chair
PC What/That the man built was/it
Topic. Actually, the chair/"" the man built ./the chair

SVA The boy/boys that the man liked is/are
T/I Verbs Last night/Yesterday some/that man/boy ran/built ./it

Table 3: Template and exemplar sentences for inanimate extraction from our single-clause construction variants.

Construction Prefix Filler NC Article1 NP1 Verb1 that Article2 NP2 Verb2 Label

Emb. Wh-Q (K) I know who/that the nurse said that the man liked ./it
Emb. Wh-Q (W) I wonder who/if the nurse said that the man liked ./it
Matrix Wh-Q Who/"" did the nurse say that the man liked ?/it
RRC The boy who/and the nurse said that the man liked was/it
Cleft It was the boy/clear that the nurse said that the man liked ./the chair
PC Who/That the nurse said that the man liked was/it
Topic. Actually, the boy/"" the nurse said that the man liked ./the chair

SVA The boy/boys that the nurse said that the man liked is/are
T/I Verbs Last night/Yesterday the nurse said that some/that man/boy ran/liked ./it

Table 4: Template and exemplar sentences for animate extraction from our multi-clause construction variants.

Construction Prefix Filler NC Article1 NP1 Verb1 that Article2 NP2 Verb2 Label

Emb. Wh-Q (K) I know what/that the nurse said that the man built ./it
Emb. Wh-Q (W) I wonder what/if the nurse said that the man built ./it
Matrix Wh-Q What/"" did the nurse say that the man built ?/it
RRC The chair which/and the nurse said that the man built was/it
Cleft It was the chair/clear that the nurse said that the man built ./the chair
PC What/That the nurse said that the man built was/it
Topic. Actually, the chair/"" the nurse said that the man built ./the chair

SVA The boy/boys that the nurse said that the man liked is/are
T/I Verbs Last night/Yesterday the nurse said that some/that man/boy ran/built ./it

Table 5: Template and exemplar sentences for inanimate extraction from our multi-clause construction variants.

model <- lmer(max_odds) ∼(1 + in_train_set * same_animacy | from) +

(1 + in_train_set * same_animacy | to) +

in_train_set * same_animacy

Figure 6: Model formula used at each position for the linear mixed-effects regressions in Experiment 1.

model <- lmer(max_odds) ∼(1 + match_filler_class + match_inversion +

match_embedded_under + match_discourse_fronted || from ) +

(1 + match_filler_class + match_inversion +

match_embedded_under + match_discourse_fronted || to ) +

match_filler_class + match_inversion +

match_embedded_under + match_discourse_fronted

Figure 7: Model formula used at each position for the linear mixed-effects regressions in Experiment 2.
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Construction Filler Class Inverted Clause Embedding Item Fronting for Discourse

Embedded Wh-Q Wh-Item False Verb Phrase False
Matrix Wh-Q Wh-Item True N/A False
RRC Wh-Item False Noun Phrase False
Cleft Null-Element False Verb Phrase True
Pseudocleft Wh-Item False N/A True
Topicalization Phrasal Element False N/A True

Table 6: Parameter values for each filler–gap construction.

C Regression Details

We perform all regressions with the lmerTest
package in R (Kuznetsova et al., 2017).

C.1 Experiment 1 Regression

In the leave-one-out setting, we fit a linear mixed
effects model at each position with our dependent
variable as the MAX ODDS at each training-set,
and evaluation-set pair. We treat the training-set
and evaluation-set as random effects, and indicator
variables for whether the evaluation-set comprises
a construction in the training-set and whether the
evaluation-set has the same animacy as the training-
set as fixed effects. We also include a term to inves-
tigate their interaction. As per Barr et al. (2013),
we include maximal random effect slope structures.
Our full regression model is reported in Figure 6,
which we fit to obtain the reported β coefficients,
and corresponding p-values.

Indicator variables are codified such that if
the evaluated construction is in the training-set,
in_train_set = 1 with in_train_set = -1
otherwise. Similarly, if the evaluated construction’s
animacy matches that of the training conditions,
same_animacy = 1 with same_animacy = -1
otherwise. The full results of this regression can
be found in Table 7. Note: In this setting, the
construction_from variable denotes the held-out
construction.

C.2 Experiment 2 Regression

In the single-construction setting, we fit a linear
mixed effects model at each position with our de-
pendent variable as the MAX ODDS at each training-
set and evaluation-set pair. We treat the training-set
and evaluation-set as random effects. Our mixed ef-
fects comprise indicator variable denoting whether
the training construction and the evaluation con-
struction match in our proposed filler–gap param-
eters of variation. A full breakdown of these pa-

rameters of variation and how they apply to our
constructions of interest can be seen in Table 6.
The resulting indicator variables take a value of 1 if
the construction in the trainset and the construction
in the evaluation set match for that given parameter,
and -1 otherwise. We include maximal random ef-
fect slope structures, excluding correlations to help
convergence, as per Barr et al. (2013).

Our resulting regression model is reported in
in Figure 7, which we fit to obtain the reported β
coefficients, and corresponding p-values (Table 8).

D Frequencies

To calculate frequencies, we use the English-EWT
Universal Dependencies dataset (De Marneffe et al.,
2021; Nivre et al., 2020; Silveira et al., 2014). It
is sourced from the English Web Treebank, a cor-
pus which totals 16,622 sentences scraped from the
web. We parse the train, test, and dev connlu asso-
ciated files searching for dependency relations de-
noting each of our given constructions. We do not
differentiate between our two classes of embedded
wh-questions, as the lexically defined constraint
would have likely yielded a non-exhaustive extrac-
tion of all possible sentences. Instead we calculate
a generic total for embedded wh-questions, and
share this count among both of them. We present
the final counts in Table 9.

Construction Type Total Count

Restrictive Relative Clauses 504
Embedded Wh-Questions 308
Matrix Wh-Questions 82
Clefts 20
Pseudocleft 6
Topicalization 6

Total Sentences 16622

Table 9: Construction Type Counts
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Term βFILLER βTHE βNP βVERB

(Intercept) 1.93*** 2.70*** 1.87*** 9.06***
in_train_set 0.67*** 0.56*** 0.42** 0.26
same_animacy 1.08*** 0.51*** 0.60*** 2.13***
in_train_set:same_animacy 0.36** 0.20** 0.10* 0.10

Table 7: Experiment 1 Regression Results. * denotes p < .05, ** denotes p < .01, and *** denotes p < .001.

Term βFILLER βTHE βNP βVERB

(Intercept) 1.15*** 1.96*** 1.32*** 7.12***
match_filler_class 0.75*** 1.06** 0.28 0.53
match_inversion 0.38** 0.51** 0.40** 0.06
match_embedded_under 0.85*** 1.05** 0.54** 2.06**
match_discourse_fronted 0.30** 0.36* 0.34*** 0.32

Table 8: Experiment 2 Regression Results. * denotes p < .05, ** denotes p < .01, and *** denotes p < .001

.

E Experiment 1: Supplementary
Information

A by-position aggregation figure for the multi-
clause variant is in Figure 8, complementing Fig-
ure 2. An extended version of the mechanistic plots
in Figure 3, including controls, appears in Figure 9,
with a multi-clause counterpart shown in Figure 10.

F Experiment 2: Supplementary
Information

We report raw bar charts for AUCs of in-degree
and out-degree centrality across single- and multi-
clause settings (Figures 11 to 14).

G Experiment 3: Supplementary
Information

We also provide mechanistic heatmaps for our
cross-clausal generalization experiments. They can
be found in Figure 15.

H Duplication with Other Model Sizes

We duplicate these experiments with other model
sizes, namely pythia-2.8b and pythia-6.9b. Be-
low, we report these results.

H.1 Experiment 1

We provide the aggregation figures across posi-
tions – single (Figure 16) and multi-clause (Fig-
ure 17) variants. We note that we find signifi-
cant differences in the same positions as with the

pythia-1.4b models. We provide regression re-
sults in Table 10.

Term βFILLER βTHE βNP βVERB

pythia-2.8b
(Intercept) 1.95*** 2.74*** 1.83*** 7.68***
in_train_set 0.67*** 0.50*** 0.37** 0.48*
same_animacy 1.08*** 0.51*** 0.51*** 2.18***
in_train_set:same_animacy 0.45** 0.19** 0.09 0.13

pythia-6.9b
(Intercept) 1.78*** 2.59*** 1.48*** 9.15***
in_train_set 0.76*** 0.59*** 0.36** 0.20
same_animacy 1.05*** 0.47*** 0.46*** 2.45***
in_train_set:same_animacy 0.42** 0.18** 0.07 0.00

Table 10: Experiment 1 Regression Results for
pythia-2.8b and pythia-6.9b. * denotes p < .05,
** denotes p < .01, and *** denotes p < .001.

H.2 Experiment 2
For experiment 2, we provide scatter plots in Fig-
ure 18 and regression results in Table 11.

Term βFILLER βTHE βNP βVERB

pythia-2.8b
(Intercept) 1.05*** 1.99*** 1.20*** 6.20***
match_filler_class 0.68*** 1.16** 0.27 0.78**
match_inversion 0.42** 0.46** 0.48*** 0.29
match_embedded_under 0.82*** 1.03** 0.35*** 1.95**
match_discourse_fronted 0.30* 0.37 0.58** 0.32

pythia-6.9b
(Intercept) 1.10*** 1.84*** 1.08*** 7.61***
match_filler_class 0.62** 1.10** 0.31 0.28
match_inversion 0.36* 0.60** 0.48*** 0.01
match_embedded_under 0.82** 1.02** 0.53** 2.05**
match_discourse_fronted 0.35* 0.31 0.39* 0.14

Table 11: Experiment 2 Regression Results for
pythia-2.8b and pythia-6.9b. * denotes p < .05,
** denotes p < .01, and *** denotes p < .001 .

H.3 Experiment 3
For experiment 3, we provide corollary figures to
Figure 5 in Figure 19.
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Figure 8: Multi-Clause Aggregation Values by Evaluation Group
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Figure 9: Single Clause ODDS at each position-layer pair for each construction. Averaged across animacy conditions.
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Figure 10: Multi-Clause ODDS at each position-layer pair for each construction. Averaged across animacy
conditions.
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Figure 11: In-Degree AUC by position, with the final facet denoting the average across positions.
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Figure 12: In-Degree AUC by position, with the final facet denoting the average across positions.
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Figure 13: Out-Degree AUC by position, with the final facet denoting the average across positions.
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Figure 14: Out-Degree AUC by position, with the final facet denoting the average across positions.
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Figure 15: ODDS at each position-layer pair for each construction in the cross-clausal generalization experiment.
Averaged across animacy conditions and items in a given group.
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(a) pythia 2.8b average normalized MAX ODDS.
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(b) pythia 6.9b average normalized MAX ODDS.

Figure 16: Top: pythia-2.8b and bottom: pythia-6.9b average normalized MAX ODDS across positions in the
single-clause variants, ±1 standard error. Normalization fixes the “Same Animacy, In Train Set” condition at 1.00.
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(a) pythia 2.8b
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Figure 17: Top: pythia-2.8b and bottom: pythia-6.9b average normalized MAX ODDS across positions in the
single-clause variants, ±1 standard error. Normalization fixes the “Same Animacy, In Train Set” condition at 1.00.
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Figure 18: Average in-degree centrality AUC and out-degree centrality AUC plotted against construction frequency.
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Figure 19: MAX ODDS ±1 standard error, by position for interventions (1) trained and evaluated on multi-clause
variants, (2) trained on single-clause variants and evaluated on multi-clause variants, and (3-4) controls. Evaluations
are performed on sentences matching training conditions (i.e. same construction and same animacy).
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